创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
流动学习〜(ML)旨在从高维数据中找到低维的嵌入。以前的作品专注于具有简单和理想场景的手工艺品或简单的数据集;但是,我们发现它们在带有不足数据的现实世界数据集上的性能很差。通常,ML方法主要是对数据结构进行建模,并随后处理低维嵌入,在前步骤中,不足采样数据的局部连通性较差,而后来步骤中不适当的优化目标将导致\ emph {结构失真}和\ \ \ \ \ \ \ \ \ \ \ emph {不合适的嵌入}。为了解决这个问题,我们提出了深层局部流动性歧管嵌入(DLME),这是一种新型的ML框架,可通过减少失真来获得可靠的歧管嵌入。我们提出的DLME通过数据增强来构建语义歧管,并在其平滑框架的帮助下克服了\ emph {结构失真}问题。为了克服\ emph {不合适的嵌入},我们为DLME设计了一个特定的损失,并在数学上表明它会根据我们提出的局部平坦度假设导致更合适的嵌入。在实验中,通过显示DLME对具有三种类型的数据集(玩具,生物学和图像)的下游分类,聚类和可视化任务的有效性,我们的实验结果表明,DLME胜过SOTA ML \&Chortantive Learning(CL)方法(CL)方法。
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译
Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.
translated by 谷歌翻译
Safety-critical Autonomous Systems require trustworthy and transparent decision-making process to be deployable in the real world. The advancement of Machine Learning introduces high performance but largely through black-box algorithms. We focus the discussion of explainability specifically with Autonomous Vehicles (AVs). As a safety-critical system, AVs provide the unique opportunity to utilize cutting-edge Machine Learning techniques while requiring transparency in decision making. Interpretability in every action the AV takes becomes crucial in post-hoc analysis where blame assignment might be necessary. In this paper, we provide positioning on how researchers could consider incorporating explainability and interpretability into design and optimization of separate Autonomous Vehicle modules including Perception, Planning, and Control.
translated by 谷歌翻译
Graphic sketch representations are effective for representing sketches. Existing methods take the patches cropped from sketches as the graph nodes, and construct the edges based on sketch's drawing order or Euclidean distances on the canvas. However, the drawing order of a sketch may not be unique, while the patches from semantically related parts of a sketch may be far away from each other on the canvas. In this paper, we propose an order-invariant, semantics-aware method for graphic sketch representations. The cropped sketch patches are linked according to their global semantics or local geometric shapes, namely the synonymous proximity, by computing the cosine similarity between the captured patch embeddings. Such constructed edges are learnable to adapt to the variation of sketch drawings, which enable the message passing among synonymous patches. Aggregating the messages from synonymous patches by graph convolutional networks plays a role of denoising, which is beneficial to produce robust patch embeddings and accurate sketch representations. Furthermore, we enforce a clustering constraint over the embeddings jointly with the network learning. The synonymous patches are self-organized as compact clusters, and their embeddings are guided to move towards their assigned cluster centroids. It raises the accuracy of the computed synonymous proximity. Experimental results show that our method significantly improves the performance on both controllable sketch synthesis and sketch healing.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) has been highly successful in transferring knowledge acquired from a label-rich source domain to a label-scarce target domain. Open-set domain adaptation (ODA) and universal domain adaptation (UNDA) have been proposed as solutions to the problem concerning the presence of additional novel categories in the target domain. Existing ODA and UNDA approaches treat all novel categories as one unified unknown class and attempt to detect this unknown class during the training process. We find that domain variance leads to more significant view-noise in unsupervised data augmentation, affecting the further applications of contrastive learning~(CL), as well as the current closed-set classifier and open-set classifier causing the model to be overconfident in novel class discovery. To address the above two issues, we propose Soft-contrastive All-in-one Network~(SAN) for ODA and UNDA tasks. SAN includes a novel data-augmentation-based CL loss, which is used to improve the representational capability, and a more human-intuitive classifier, which is used to improve the new class discovery capability. The soft contrastive learning~(SCL) loss is used to weaken the adverse effects of the data-augmentation label noise problem, which is amplified in domain transfer. The All-in-One~(AIO) classifier overcomes the overconfidence problem of the current mainstream closed-set classifier and open-set classifier in a more human-intuitive way. The visualization results and ablation experiments demonstrate the importance of the two proposed innovations. Moreover, extensive experimental results on ODA and UNDA show that SAN has advantages over the existing state-of-the-art methods.
translated by 谷歌翻译
The miniaturization and mobility of computer vision systems are limited by the heavy computational burden and the size of optical lenses. Here, we propose to use a ultra-thin diffractive optical element to implement passive optical convolution. A division adjoint opto-electronic co-design method is also proposed. In our simulation experiments, the first few convolutional layers of the neural network can be replaced by optical convolution in a classification task on the CIFAR-10 dataset with no power consumption, while similar performance can be obtained.
translated by 谷歌翻译
机器人定位是使用地图和传感器测量结果找到机器人姿势的反问题。近年来,可逆神经网络(INNS)成功地解决了各个领域的模棱两可的反问题。本文提出了一个解决旅馆本地化问题的框架。我们设计了一个在逆路径中提供隐式映射表示形式的旅馆。通过对评估中的潜在空间进行采样,局部\ _inn输出机器人以协方差构成,可用于估计不确定性。我们表明,本地\ _inn的本地化性能与延迟较低的当前方法相当。我们使用训练集的外观显示了从本地\ _inn的详细的2D和3D地图重建。我们还使用本地\ _inn提供了全球本地化算法来解决绑架问题。
translated by 谷歌翻译
尽管机器人学课程在高等教育方面已建立,但这些课程通常专注于理论,有时缺乏对开发,部署和将软件应用于真实硬件的技术的系统覆盖。此外,大多数用于机器人教学的硬件平台是针对中学水平的年轻学生的低级玩具。为了解决这一差距,开发了一个自动驾驶汽车硬件平台,称为第1 f1 f1tth,用于教授自动驾驶系统。本文介绍了以“赛车”和替换考试的竞赛为主题的各种教育水平教学模块和软件堆栈。第1辆车提供了一个模块化硬件平台及其相关软件,用于教授自动驾驶算法的基础知识。从基本的反应方法到高级计划算法,教学模块通过使用第1辆车的自动驾驶来增强学生的计算思维。第1辆汽车填补了研究平台和低端玩具车之间的空白,并提供了学习自主系统中主题的动手经验。多年的四所大学为他们的学期本科和研究生课程采用了教学模块。学生反馈用于分析第1个平台的有效性。超过80%的学生强烈同意,硬件平台和模块大大激发了他们的学习,而超过70%的学生强烈同意,硬件增强了他们对学科的理解。调查结果表明,超过80%的学生强烈同意竞争激励他们参加课程。
translated by 谷歌翻译